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1 Introduction  

Pore-scale modeling of multiphase flow through porous media is addressed most frequently to improve 
our understanding of flow and transport phenomena in such settings. Besides, it can be used to obtain 
macro-scale constitutive equations, to provide multiphase flow properties for large scale models, to predict 
how these properties may vary with rock type, wettability, etc. 

The description of a physical interface separating different phases inside a pore volume is a problem of 
crucial importance for such a modeling. Instead of using a regularization technique to capture the interface, 
which may affect the results in non-trivial way, the diffuse interface method is based on thermodynamic 
treatment of phase transition (or phase mixing) zone. As a result, it is a good choice for a numerical 
technique, handling the morphological changes of the interface [1]. 

We have used systematically the diffuse interface approach (or equivalently, the field phase model) of 
two-phase immiscible stable and unstable flow for 2D and 3D computations in a porous medium. We 
compared numerical solutions to analytical solutions for simple geometries (parallel flat plates and a 
cylindrical tube) and calculated subsequently phase flows between regular arrays of cylinders or spheres. 

In all cases to check a flow regime we calculated phase relative permeabilities. The impact of flow 
stability, wettability and capillary number on the flow pattern and models computational performance are 
also presented and discussed.  

2 Diffuse interface model  

Presented below is only a brief description of Cahn-Hilliard diffuse interface model. For more details of 
the theory and its formalism see eg [1], [2], [3]. The second gradient theory assumes that free energy of a 

system is a functional of an order parameter φ, its gradient φ and the temperature T. In the case of an 
isothermal binary fluid, a free energy can be defined for flow configurations where the system is not in 
equilibrium as a following functional: 
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In equation (1) Ω is the region of space occupied by the system and φ is a dimensionless phase-field variable 
which serves to identify the two fluids with volume fractions (1+φ)/2 and (1−φ)/2, α the mixing energy 
density [N], a following shape for so-called double potential is chosen: g(φ) =(1/4ξ2)∙(φ2-1)2. The chemical 
potential is introduced as: 
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where ξ is a capillary width [m], that scales with the thickness of the diffuse interface. The fourth order 
convective Cahn-Hilliard equation describing the evolution of φ reads as: 
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where the mobility M(φ) =Mc (1-γφ2) ξ2 can be taken without loss of generality at γ=0. Combining equations 
(2),(3) and modified Navier-Stokes ones for incompressible fluid, one gets finally the model equations to be 
solved which are: 

 

    

0

)(



















u

uuuu
u



 Tp
t

  (4) 

                                               + equations (2), (3)  



The surface tension is introduced through the integral of the free-energy density across the interface; it 
relates both above defined model parameters, α and ξ , via equilibrium relation [4]: σ = (2√2/3)∙(α/ξ). 

3 Main results  

Promising first results have been obtained for 3D two-phase flow model based on diffuse interface 
approach (Figure 1). Flow regimes at viscous and capillary limits, for drainage and imbibitions, at favorable 
and unfavorable to viscous fingering viscosity ratio. Analysis of results expressed as phase relative 
permeabilities allowed to distinguish classical (Darcy’s law based) and “non-classical” flow behavior which 
generally takes place, at least, locally during stable and unstable displacement.  

Additional efforts are needed to extend the application field for 3D diffuse interface model of two-
phase pore scale flow. As an example of nearest future work, the locally dominating capillary forces at pore 
scale can be considered which are responsible for mass exchange by capillary imbibition. Modeling this 
process in its dynamics may provide better understanding of mass transfer from both qualitative and 
quantitative viewpoints. Realistic geometry of pores becomes one of key factors for such a modeling. 
 

 
Figure 1. 3D model geometry and boundary conditions (a), viscous limit case phase field at capillary number Ca=0.15 (b). 
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